Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 30, 2026
-
Free, publicly-accessible full text available August 1, 2026
-
Free, publicly-accessible full text available July 11, 2026
-
Abstract This paper introduces new solvers for efficiently computing solutions to large-scale inverse problems with group sparsity regularization, including both non-overlapping and overlapping groups. Group sparsity regularization refers to a type of structured sparsity regularization, where the goal is to impose additional structure in the regularization process by assigning variables to predefined groups that may represent graph or network structures. Special cases of group sparsity regularization includeℓ1and isotropic total variation regularization. In this work, we develop hybrid projection methods based on flexible Krylov subspaces, where we first recast the group sparsity regularization term as a sequence of 2-norm penalization terms using adaptive regularization matrices in an iterative reweighted norm fashion. Then we exploit flexible preconditioning techniques to efficiently incorporate the weight updates. The main advantages of these methods are that they are computationally efficient (leveraging the advantages of flexible methods), they are general (and therefore very easily adaptable to new regularization term choices), and they are able to select the regularization parameters automatically and adaptively (exploiting the advantages of hybrid methods). Extensions to multiple regularization terms and solution decomposition frameworks (e.g. for anomaly detection) are described, and a variety of numerical examples demonstrate both the efficiency and accuracy of the proposed approaches compared to existing solvers.more » « lessFree, publicly-accessible full text available November 4, 2025
-
Inverse models arise in various environmental applications, ranging from atmospheric modeling to geosciences. Inverse models can often incorporate predictor variables, similar to regression, to help estimate natural processes or parameters of interest from observed data. Although a large set of possible predictor variables may be included in these inverse or regression models, a core challenge is to identify a small number of predictor variables that are most informative of the model, given limited observations. This problem is typically referred to as model selection. A variety of criterion-based approaches are commonly used for model selection, but most follow a two-step process: first, select predictors using some statistical criteria, and second, solve the inverse or regression problem with these predictor variables. The first step typically requires comparing all possible combinations of candidate predictors, which quickly becomes computationally prohibitive, especially for large-scale problems. In this work, we develop a one-step approach for linear inverse modeling, where model selection and the inverse model are performed in tandem. We reformulate the problem so that the selection of a small number of relevant predictor variables is achieved via a sparsity-promoting prior. Then, we describe hybrid iterative projection methods based on flexible Krylov subspace methods for efficient optimization. These approaches are well-suited for large-scale problems with many candidate predictor variables. We evaluate our results against traditional, criteria-based approaches. We also demonstrate the applicability and potential benefits of our approach using examples from atmospheric inverse modeling based on NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite.more » « lessFree, publicly-accessible full text available December 12, 2025
-
Free, publicly-accessible full text available December 9, 2025
-
Abstract We consider the solution of nonlinear inverse problems where the forward problem is a discretization of a partial differential equation. Such problems are notoriously difficult to solve in practice and require minimizing a combination of a data-fit term and a regularization term. The main computational bottleneck of typical algorithms is the direct estimation of the data misfit. Therefore, likelihood-free approaches have become appealing alternatives. Nonetheless, difficulties in generalization and limitations in accuracy have hindered their broader utility and applicability. In this work, we use a paired autoencoder framework as a likelihood-free estimator (LFE) for inverse problems. We show that the use of such an architecture allows us to construct a solution efficiently and to overcome some known open problems when using LFEs. In particular, our framework can assess the quality of the solution and improve on it if needed. We demonstrate the viability of our approach using examples from full waveform inversion and inverse electromagnetic imaging.more » « less
-
Abstract. Inverse models arise in various environmental applications, ranging from atmospheric modeling to geosciences. Inverse models can often incorporate predictor variables, similar to regression, to help estimate natural processes or parameters of interest from observed data. Although a large set of possible predictor variables may be included in these inverse or regression models, a core challenge is to identify a small number of predictor variables that are most informative of the model, given limited observations. This problem is typically referred to as model selection. A variety of criterion-based approaches are commonly used for model selection, but most follow a two-step process: first, select predictors using some statistical criteria, and second, solve the inverse or regression problem with these predictor variables. The first step typically requires comparing all possible combinations of candidate predictors, which quickly becomes computationally prohibitive, especially for large-scale problems. In this work, we develop a one-step approach, where model selection and the inverse model are performed in tandem. We reformulate the problem so that the selection of a small number of relevant predictor variables is achieved via a sparsity-promoting prior. Then, we describe hybrid iterative projection methods based on flexible Krylov subspace methods for efficient optimization. These approaches are well-suited for large-scale problems with many candidate predictor variables. We evaluate our results against traditional, criteria-based approaches. We also demonstrate the applicability and potential benefits of our approach using examples from atmospheric inverse modeling based on NASA's Orbiting Carbon Observatory 2 (OCO-2) satellite.more » « less
-
Abstract In this work, we describe a new approach that uses variational encoder-decoder (VED) networks for efficient uncertainty quantification forgoal-orientedinverse problems. Contrary to standard inverse problems, these approaches are goal-oriented in that the goal is to estimate some quantities of interest (QoI) that are functions of the solution of an inverse problem, rather than the solution itself. Moreover, we are interested in computing uncertainty metrics associated with the QoI, thus utilizing a Bayesian approach for inverse problems that incorporates the prediction operator and techniques for exploring the posterior. This may be particularly challenging, especially for nonlinear, possibly unknown, operators and nonstandard prior assumptions. We harness recent advances in machine learning, i.e. VED networks, to describe a data-driven approach to large-scale inverse problems. This enables a real-time uncertainty quantification for the QoI. One of the advantages of our approach is that we avoid the need to solve challenging inversion problems by training a network to approximate the mapping from observations to QoI. Another main benefit is that we enable uncertainty quantification for the QoI by leveraging probability distributions in the latent and target spaces. This allows us to efficiently generate QoI samples and circumvent complicated or even unknown forward models and prediction operators. Numerical results from medical tomography reconstruction and nonlinear hydraulic tomography demonstrate the potential and broad applicability of the approach.more » « less
An official website of the United States government
